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A Direct Chebyshev Multidomain Method for Flow
Computation with Application to Rotating Systems

I. Raspo, J. Ouazzani and R. Peyret

ABSTRACT. This paper presents a spectral multidomain method for solving
Navier-Stokes equations in the vorticity - stream function formulation.
Numerical results are reported and compared with spectral monodomain
solutions to show the advantage of the domain decomposition for some
problems with singular solution.

1. Introduction

Spectral methods are very efficient for calculating smooth solutions in rectangular
domains. On the other hand, when the solution exhibits a large gradient or a singularity
inside the domain, the efficiency of the spectral methods is lost. One way to remove this
difficulty is to use a domain decomposition in order to isolate the singularity at a corner
boundary of subdomains, The multidomain method presented here is based on an
extensive use of the influence matrix technique ([1], [2]). The aim of this approach is to
obtain in a direct way, i. e. without iterative process, the values of the variables at the
interface between two adjacent subdomains insuring the continuity of their normal
derivatives.

The method is applied to the computation of the crystal growth by the Czochralski
process. In such a configuration ([3)), the vorticity and the azimuthal velocity derivative
are singular at the junction between the crystal and the free surface of the melt, where the
type of boundary conditions changes. In order to easily describe the method and also to
avoid supplementary numerical difficulties associated with the axis of rotation, we
consider, in the following sections, a plane mathematical model. Results concerning the
axisymmetric Czochralski process will be presented in the last section.

2. Mathematical model
We consider the geometrical configuration of figure 1 (see on the next page). The

governing equations are the 2D Navier Stokes equations in the vorticity o - stream
function y formulation ({31). The other variable is the temperature T determined by a
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transport - diffusion equation. The equations are solved in the domain Q=[0,1] x [0,a],
the characteristic length being R, and the characteristic velocity /R ; oa=H/R. isthe
gap ratio and y=Ry/R is the radius ratio by reference to the Czochralski configuration.
The boundary conditions are given on figure 1. The dimensionless parameters are Pr=
v/, and Gr=B3Tg R3/u2 , where g is the gravity, v the kinematic viscosity, X the
thermal diffusivity, B the thermal volume expansion coefficient and ST the temperature
difference between the crucible of radius R and the crystal of radius Ry.

The time discretization is done through the second - order finite difference backward
Euler - Adams Bashforth scheme ([2]). Therefore, at each time step, we have to solve a
Helmholtz problem for the temperature and a Stokes - type problem for (w,y), using a
collocation Chebyshev method.

3. Multidomain method for Stokes-type problem
We describe the method for solving the Stokes-type problem for (©,y). The method
is the same, with obvious simplifications, for solving the Helmholtz problem for the
temperature. More details are given in [3].
The problem to solve, formulated in cartesian coordinates, is of general form:

An-o0=F, Ay-0=0 inQ

(1) \v=g,%\5|{=h onl"zUl"3UI"4
y=g,0=f onT",UT,

wherel"1={x=0,OSzSa};I'2=(0SxSy,z=0L);I"'2={'y_<.x.<.1,z=0l},
N={x=1,0<z<a};[,={0<x<1,z=0}.
0/on denotes the normal derivative,

The computational domain Q is divided into 2 subdomains j, i=1, 2. Then, the
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Figure 1 : Geometrical configuration.
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global problem (1) is replaced by a set of two problems solved respectively in the
corresponding subdomains.

Let us symbolically note By;=S; and B'w;=S’; the above boundary conditions
on I'®, the physical boundary of Q;. More precisely, we have:
M=1Ur,u{x0),0<x<y}and I®=1",UT; U{ x0), y<x<1}.

At the interface 2 between the two adjacent subdomains Q1 and Q3, we impose
the following conditions of continuity, for ¢=0, y:

@ b=ty %

These conditions of continuity are enforced through the influence matrix technique.
More precisely, the solution in Qj is sought in the form:

- K ’ K 7
w; w; (Dik Wy
3 =~ ]+ 2 A + 2 ,
( ) (\Vl) V. g lk(\l/lk) kel xk( } lk)

1

where (&;,§,) is solution of:

At~ o®;=F;, Af;-®;=0 inQ;,
@ BY;=S;,B'®,=S, onT®,
G)i::o!‘T’i:O OH’YIZ’

(0'3.¥"0), for k=1,..,K, is solution of :

A0’y -0w'y =0, Ay-0%=0 ing;,
© By, =0,B'0’,=0 onT9,
m,ik(nm) = 8km ’ w'i_k =0 on v,

(where ), m=1,..K, refers to the collocation points on ¥y, and 8y, is the Kronecker
symbol) and ; )

(0”3 W3, for k=1,..,K, is solution of:

Am”ik — Gm”ik = 0, A‘l’”ik — (x)”ik =0 in Qi R
©® By”,=0.B'0", =0 onTV¥,
05 =0, ¥i{Nn) = Oy onY.

Each Stokes problem (4), (5) and (6) is solved using the influence matrix technique
(f1], [21). The conditions (2) with the decomposition (3) give an algebraic system (o
determine the constants Ak and yjk which are the values at the collocation points on
Y12 of @ and vy, respectively. The matrix of this system is called the coniinuity
influence matrix. It is important to note that this matrix, as wel} as the boundary
influence matrices of the Stokes problems (4), (5) and (6), has some eigenvalues equal to
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zero. So we have to remove some points of the boundary to make these matrices
invertible ({1], [6]).

4, Numerical results

As already said, the vorticity « exhibits a singularity at point E (see figure 1 on
page 2). For the Stokes problem, @ behaves like p~1/2 where p is the distance to the
singular point E. The spectral coefficients of a function presenting such a singular
behaviour do not decrease at all, as it can be seen on figure 2.a) which shows these
coefficients for the function f(x) = {(e-2x)2 for-1<x<0;0,for0<x<1).
This function is infinite at x=0 if £=0. In order to avoid infinite values, we chose
£=2m/N2, N being the number of collocation points. When using a two-domain method,
the singularity is located at a corner and the convergence of the spectral coefficients is
much better. As an example, Figure 2b) shows the Chebyshev coefficients of the

function f(x)=(1-x+ 8)_1/2, for-1<x<1, for which the singularity is at x=1 (if
€=0). It is important to note that, nevertheless, we have not the spectral accuracy but we
can see clearly the advantage of the domain decomposition on the horizontal vorticity
profile at the first line of collocation points under the boundary containing the singular
point E (see figure 3). This vorticity distribution is solution of the problem described in
section 2. For the resolution NxM = 55x73 (N and M are the numbers of collocation
points respectively in the x - direction and in the z - direction), the monodomain
solution exhibits large oscillations whereas the multidomain solution does not
(N1=N2=(N+1)/2). Let us note that these profiles are obtained from a Chebyshev
polynomial interpolation on a regular mesh 201 x 201.

5. Application to the Czochralski melt configuration

Let us now consider the physical problem which induced the mathematical model
described in section 2. For this axisymmeltric problem, we have not only the singularity
of the vorticity but also the singularity of the azimuthal velacity derivative because of a
discontinuity of boundary conditions at the crystal - free surface junction. Indeed, in z=c,
the boundary conditions for the azimuthal velocity v are :

) v=(Rex-—Rec)r,forOSrSy;g—‘z'=O,forySrSI
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Figure 2 : Spectral coefficients Ay for a resolution N=65 : a) of a singular function
f(x) in x=0 ; b) of a singular function f(x) in x=1.
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Monodomain solution Multidomain solution

Figure 3 : Vorticity profile under the boundary containing the point E , for the
resolution NxM=55x73.

where Rey is the rotation Reynolds number of the crystal of radius Ry and Reg is the
rotation Reynolds number of the crucible of radius R¢. The radial coordinate r replaces
the cartesian coordinate x. A coordinate transformation in the radial direction has been
done in the 2 domain solution in order to put the calculation points away from the axis.
On the other boundaries, we have the boundary condition v=0.

The results presented here were obtained with a Prandtl number Pr=0.05, a gap ratio
o=1, and a radius ratio y=0.4. The multidomain solution is compared with a spectral
monodomain solution. Figure 4 shows the configuration of the flow for Rex=2500,

Monodomain solution

1

Multidomain solution

Streamlines Iso-azimuthal velocity patterns  Iso-vorticity pattems

Figure 4 : Flow configuration for Rex=2500, Rec=0 and Gr=10° and for the
resolution NxM=41x41.
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Gr=10° and Rec=0. The advantage of the multidomain method for this physical problem
can be seen clearly on the iso-azimuthal velocity patterns drawn using an interpolation
on a regular mesh 101 x 101: the monodomain solution exhibits large Gibbs
oscillations under the crystal, because of the discontinuity, whereas there are no
oscillations on the multidomain solution. These oscillations are less visible on the iso -
vorticity lines because no interpolation has been used: the isolines are drawn on the
collocation points themselves.

6. Conclusion

We have presented a direct multidomain technique which allows to use efficiently
spectral methods for problems whose solution is not regular. We have shown that this
method gives a good accuracy for such a solution and can be used in an efficient way for
complex physical problems such as the Czochralski melt configuration. It is important
to note that this technique can also allow to use spectral methods in non rectangular
domains. Indeed, we are now using this multidomain method with a decomposition in
four subdomains for the flow computation in a rotating cavity with a T - shape. The
results obtained are satisfying and will be published in a forth coming paper.
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